Monica

Geometry Period:____

Date:____

Directions: Answer all of the questions below. Be sure to show your work!

1) The three lines in the diagram below are parallel. Determine the value of x.

$$\frac{X}{6} = \frac{3}{X+7}$$

$$X(x+7) = 18$$

$$X^2 + 7x = 18$$

$$x^2 + 7x - 18 = 0$$

$$(x+9)(x-2)=0$$

$$x \neq 9$$
 $x = Z$

2) In $\triangle ABC$, point D is on \overline{AB} , and point E is on \overline{BC} such that $\overline{DE} \parallel \overline{AC}$. If DB = 2, DA = 7, and DE = 3, what is the length of \overline{AC} ?

$$\frac{2}{3} = \frac{9}{X}$$

$$2x = 27$$

$$X = 13.5$$

3) In the diagram below of $\triangle ACD$, E is a point on \overline{AD} and B is a point on \overline{AC} , such that $\overline{EB} \parallel \overline{DC}$. If AE=3, ED=6, and AC=15, find the length of AB.

$$\frac{9}{3} = \frac{15}{x}$$

$$X = 5$$

With this additional piece of information, what theorem or postulate would you use to prove the triangles are similar?

5) Look back at question 4. Answer the question again using a *different* piece of information.

$$\frac{DE}{AC} = \frac{DB}{AB}$$

6) In the diagram below, $\Delta ABC \sim \Delta DBE$. If DB = 6, DE = x + 4, BC = 12, and AB = 16, what is the value of x?

$$AC^{2} = 12^{2} + 16^{2}$$

 $AC^{2} = 400$
 $AC = 20$

$$\frac{6}{x+4} = \frac{16}{20}$$

$$16(x+4) = 120$$

$$16x + 64 = 120$$

$$16x = 56$$

$$x = 3.5$$

7) The accompanying diagram shows a 24-foot ladder leaning against a building. A steel brace extends from the ladder to the point where the building meets the ground. The brace forms a right angle with the ladder. If the steel brace is connected to the ladder at a point that is 10 feet from the foot of the ladder, what is the value of x? Write your answer in simplest radical form.

$$\frac{14}{X} = \frac{X}{10}$$

$$X^{2} = 140$$

$$X = \sqrt{140}$$

$$X = 2\sqrt{35}$$

8) In the diagram below of right triangle ACB, altitude \overline{CD} is drawn to hypotenuse \overline{AB} . If AB=36 and AC=12, what is the length of AD?

$$\frac{x}{12} = \frac{12}{36}$$
 $36x = 144$
 $x = 4$

9) In $\triangle PQR$, $\angle PRQ$ is a right angle and \overline{RT} is drawn perpendicular to hypotenuse \overline{PQ} . If PT=x, RT=6, and TQ = 4x, what is the length of \overline{PQ} ?

$$\frac{x}{6} = \frac{6}{4x}$$

$$4x^2 = 36$$

$$x^2 = 9$$

$$X = 3$$

$$PQ = 5x$$

10) In the diagram below, \overline{BFCE} , $\overline{AB} \perp \overline{BE}$, $\overline{DE} \perp \overline{BE}$, and $\angle DFC \cong \angle ACB$. Prove that $\triangle ABC \sim \triangle DEF$.

- Statements | Reasons
- D | AB I BE DELBE 1. GIVEN

 - 5. DABC~ DEF 5. AA~

- 2. LB = 90, LE=90 2. Def. of 1 3. LB = LE 3. All right AS are = 4. LDFC = LACB 4. GIVEN

Please answer question 20 worth 6 points. Clearly show the recessary work it took for you to come to your answer A correct numerical answer with no work shown will receive only I point [6 points]

11)

Look at the figure of circle O.

Show that (\overline{AF}) (\overline{AC}) = (\overline{AG}) (\overline{AD}) by proving triangle ACG ~ triangle ADF.

Statements

1) I FGG = = = FG

2) LFDG = = = = = FG

3 LFCG = LFDG

(4) LA = LA

5) DACG ~ DADF

 $\frac{AF}{AD} = \frac{AG}{AC}$

(7) (AF)(AC) = (AG)(AD)

Reasons

Dinscribed &s are half of the intercepted arc

- (2) inscribed as are half of the intercepted arc
- (3) Substitution

4) Reflexive Property

€ AA ~

6 corresponding parts of similar triangus are proportional

(2) cross multiply